Carcinogenesis Decarboxylase and Decreases Sensitivity to Chemical Reduces Tumor Promoter Induction of Ornithine Targeted Antizyme Expression in the Skin of Transgenic Mice
نویسندگان
چکیده
To directly evaluate the role of increased ornithine decarboxylase (ODC) and polyamines in mouse skin carcinogenesis, we used bovine keratin 5 (K5) and keratin 6 (K6) promoter elements to direct the expression of antizyme (AZ) to specific skin cell populations. AZ is a multifunctional regulator of polyamine metabolism that inhibits ODC activity, stimulates ODC degradation, and suppresses polyamine uptake. K5-AZ mice treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) at 0 and 24 h exhibit increases in epidermal and dermal ODC activity that are reduced in magnitude. K6-AZ mice treated similarly do not show any increased ODC activity or protein after a second application due to TPA-induced expression of AZ protein. Epidermal and dermal polyamine content, particularly spermidine, is reduced in untreated K5-AZ mice and TPA-treated K5-AZ and K6-AZ mice. Susceptibility to 7,12-dimethylbenz(a)anthracene/TPA carcinogenesis was also investigated for two K6-AZ transgenic lines [K6-AZ(52) and K6-AZ(18)] and a single K5-AZ line. K6-AZ(52) mice had a substantial delay in tumor onset and a >80% reduction in tumor multiplicity compared with normal littermates. K6AZ(18) and K5-AZ mice also developed fewer papillomas than littermate controls (35% and 50%, respectively), and the combination of these lines to produce double transgenic animals yielded an additive decrease (70%) in tumor multiplicity. These mice demonstrate for the first time that AZ suppresses tumor growth in an animal cancer model and provide a valuable model system to evaluate the role of ODC and polyamines in skin tumorigenesis.
منابع مشابه
Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis.
To directly evaluate the role of increased ornithine decarboxylase (ODC) and polyamines in mouse skin carcinogenesis, we used bovine keratin 5 (K5) and keratin 6 (K6) promoter elements to direct the expression of antizyme (AZ) to specific skin cell populations. AZ is a multifunctional regulator of polyamine metabolism that inhibits ODC activity, stimulates ODC degradation, and suppresses polyam...
متن کاملTransgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth.
Transgenic mice expressing proteins altering polyamine levels in a tissue-specific manner have considerable promise for evaluation of the roles of polyamines in normal, hypertrophic and neoplastic growth. This short review summarizes the available transgenic models. Mice with large increases in ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase or antizyme, a protein regulating p...
متن کاملTumor suppressor activity of ODC antizyme in MEK-driven skin tumorigenesis.
To test the hypothesis that suppression of ornithine decarboxylase (ODC) activity blocks the promotion of target cells in the outer root sheath of the hair follicle initiated by Raf/MEK/ERK activation, we crossed mice overexpressing an activated MEK mutant in the skin (K14-MEK mice) with two transgenic lines overexpressing antizyme (AZ), which binds to ODC and targets it for degradation. K14-ME...
متن کاملAntizyme Overexpression in Transgenic Mice Reduces Cell
Antizyme (AZ) is known to be a regulator of polyamine metabolism that inhibits ornithine decarboxylase activity and polyamine transport, thus restricting polyamine levels. Transgenic mice with AZ expression targeted to the basal cell layer of the forestomach epithelium by the keratin 5 promoter were used to investigate whether AZ overexpression inhibited uncontrolled cell proliferation in zinc-...
متن کاملAntizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis.
Antizyme (AZ) is known to be a regulator of polyamine metabolism that inhibits ornithine decarboxylase activity and polyamine transport, thus restricting polyamine levels. Transgenic mice with AZ expression targeted to the basal cell layer of the forestomach epithelium by the keratin 5 promoter were used to investigate whether AZ overexpression inhibited uncontrolled cell proliferation in zinc-...
متن کامل